
17. Final remarks 

In these final, partly retrospective remarks, which are intended neither as a 
summary nor as a conclusion, we shall highlight and comment some overlapping 
facets of what has been achieved for the pattern-based solution of the general finite 
Constraint Satisfaction Problem (with a few open questions). As for the practical 
applicability of the approach developed in this book, we merely refer to the many 
Sudoku examples and to the chapters dedicated to other logic puzzles. 

17.1. About our approach to the finite CSP 

17.1.1. About the general distinctive features of our approach 

There are five main inter-related reasons why this book diverges radically from 
the current literature on the finite CSP1: 

– almost everything in our approach, in particular all our definitions and 
theorems, is formulated in terms of mathematical logic, independently of any 
algorithmic implementation; (apart from the obvious logical re-formulation of a 
CSP, the current literature on CSPs is mainly about algorithms for solving them and 
comparisons of such algorithms); however, by effectively implementing them and 
applying them to various types of constraints, we have shown that these logical 
definitions are not mere abstractions and that they can be made fully operational; 

– we systematically use redundant (but not overly redundant) sets of CSP 
variables; correlatively, we do not define labels as <variable, value> pairs but as 
equivalence classes of such pairs; 

– we fix the main parameter defining the “size” of a CSP and we are not (or not 
directly) concerned with the usual theoretical perspectives of complexity, such as 
NP-completeness of a CSP with respect to its size; 

–  we nevertheless tackle questions of complexity, in terms of the statistical 
distribution of the minimal instances of a fixed size CSP; although all our resolution 
rules are valid for all the instances of a CSP, without any kind of restriction, we 
grant minimal instances a major role in all our statistical analyses and classification 
                               
1 We are not suggesting that our approach is better than the usual ones; we are aware that our 
purposes are non-standard and they may be irrelevant when speed of resolution is the main 
criterion; this is why we have stated our motivations with some detail in the Foreword. 
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results; the thin layer of instances they define in the whole forest of possible 
instances (see chapter 6 for this view) allows to discard secondary problems that 
multi-solution or over-constrained instances would raise for statistics; (by contrast, 
the notion of minimality is almost unknown in the CSP world);  

– last but not least, our purposes lie much beyond the usual ones of finding a 
solution or defining the fastest algorithms for this. Here, instead of the solution as a 
result, we are interested in the solution as a proof of the result, i.e. in the resolution 
path. Accordingly, we have concentrated on finding no-guessing, constructive, pure 
logic, pattern-based, rule-based, understandable, meaningful resolution paths – 
though these words did not have a clear pre-assigned meaning. 

We have taken this purpose into account in Part I by interpreting the “pure logic” 
requirement literally – i.e. as a solution completely defined in terms of mathematical 
logic (with no reference to any algorithmic notions). Thus, we have introduced a 
general resolution paradigm based on progressive candidate elimination. This 
amounts to progressive domain restriction, a classical idea in the CSP community. 
But, in our approach, each of these eliminations is justified by a single pattern – 
more precisely by a well defined resolution rule of a given resolution theory – and 
is interpreted in modal (non algorithmic) terms. We have established a clear logical 
(intuitionistic) status for the notion of a candidate (a notion that does not a priori 
pertain to the CSP Theory). Moreover, we have shown that the modal operator that 
naturally appears when one tries to provide a formal definition of a candidate  can 
be “forgotten” when we state resolution rules, provided that we work with 
intuitionistic (or constructive) instead of classical logic (which is not a restriction in 
practice). 
 

Once this logical framework is set, a more precise purpose can be examined, not 
completely independent from the vague “understandable” and “meaningful” original 
ones: one may want the simplest pure logic (or “rule-based” or “pattern-based”) 
solution. As is generally understood without saying when one speaks of the simplest 
solution to a mathematical problem, we mean neither easiest to discover for a human 
being nor computationally cheapest, but simplest to understand for the reader. Even 
with such precisions, we have shown that “simplest” may still have many different, 
all logically grounded, meanings, associated with different (purely logical) ratings of 
instances.  

Taking for granted that hard minimal instances of most fixed size CSPs cannot 
be solved by elementary rules but they require some kind of chain rules (with the 
classical xy-chains of Sudoku as our initial inspiration), we have refined our general 
paradigm by defining families of resolution rules of increasing logical (and 
computational) complexity, valid for any CSP: some reversible (Bivalue-Chains, g-
Bivalue-Chains, Reversible-Subset-Chains, Reversible-g-Subset-Chains) and some 
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orientated, much more powerful ones (whips, g-whips, Sp-whips, gSp-whips, Wp-
whips and similar braid families).  

The different resolution paths obtained with each of these families when the 
simplest-first strategy is adopted correspond to different legitimate meanings of 
“simplest solution” (when they lead to a solution) and, in spite of strong 
subsumption relationships, we have shown (in several chapters, by exemples of 
instances that have different ratings) that none of them can be completely reduced to 
another in a way that would preserve the ratings. Said otherwise: there does not 
seem to be any universal notion of (logical) simplicity for the resolution of a CSP. 

17.1.2. About our resolution rules (whips, braids, …) 

Regarding these new families of chain rules, now reversing the history of our 
theoretical developments, four main points should be recalled: 

– We have introduced a formal definition of Trial-and-Error (T&E), a procedure 
that, in noticeable contrast with the well known structured search algorithms 
(breadth-first, depth-first, …) and with all their CSP specific variants implementing 
some form of constraint propagation (arc-consistency, path-consistency, MAC, …), 
allows no “guessing”, in the sense that it accepts no solution found by sheer chance 
during the search process: a value for a CSP variable is accepted only if all its other 
possible values have been tested and each of them has been constructively proven to 
lead to a contradiction. 

– With the “T&E vs braids” theorem and its “T&E(T) vs T-braids” extensions to 
various resolution theories T, we have proven that a solution obtained by the 
T&E(T) procedure can always be replaced by a “pure logic” solution based on T-
braids, i.e. on sequential patterns with no OR-branching accepting simpler patterns 
taken from the rules in T as their building blocks. 

– Because its importance could not be over-estimated, we have proven in great 
detail that all our generalised braid resolution theories (braids, g-braids, Sp-braids, 
gSp-braids, Bp-braids, B*-braids, …) have the confluence property. Thanks to this 
property, we have justified the idea that these types of logical theories can be 
supplemented by a “simplest first” strategy, defined by assigning in a natural way a 
different priority to each of their rules. When one tries to compute the rating of an 
instance and to find the simplest, pure logic solution for it, in the sense that it has a 
resolution path with the shortest possible braids in the family (which the T&E 
procedure alone is unable to provide), this strategy allows to consider only one 
resolution path; without this property, all of them should a priori be examined, 
which would add an exponential factor to computational complexity2. Even if the 
                               
2 The confluence property of a resolution theory T should not be interpreted beyond what it 
means. In particular, it does not allow to assign a rating to each candidate of an instance P: 
different resolution paths for P within T will always have the same rating of their hardest step, 
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goal of maximum simplicity is not retained, the property of stability for confluence 
of these T-braid resolution theories remains very useful in practice, because it 
guarantees that valid eliminations and assertions occasionally found by any other 
consistent opportunistic solving methods (or any application-specific heuristics or 
any other search strategy) cannot introduce any risk of missing a solution based on 
T-braids or of finding only ones with unnecessarily long braids. 

– With the statistical results of chapter 6, we have also shown that, in spite of a 
major structural difference between whips and braids (the “continuity” condition), 
whips (even if restricted to the no-loop ones) are a very good approximation of 
braids3, in the double sense that: 1) the associated W and B ratings are rarely 
different when the W rating is finite and 2) the same “simplest first” strategy, a 
priori justified for braids but not for whips, can be applied to whips, with the result 
that a good approximation of the W rating is obtained after considering only one 
resolution path (i.e. the concrete effects of non confluence of the whip resolution 
theories appear only rarely). This is the best situation one can desire for a restriction: 
it reduces structural (and computational) complexity but it entails little difference in 
classification results.4 Of course, much work remains to be done to check whether 
this proximity of whips and braids is true for all the types of extended whips and 
braids defined in this book (it seems to be true for g-whips) and for CSPs other than 
Sudoku (it seems to be true also for Futoshiki, Kakuro, Map colouring, Numbrix® 
and Hidato®, as can be seen by the small number of occurrences of braids appearing 
in the resolution paths). 

17.1.3. About human solving based on these rules 

The four above-mentioned points have their correlates regarding a human trying 
to solve an instance of a CSP “manually” (or should we say “neuronally”?), as may 
be the “standard” situation for some CSPs, such as logic puzzles: 

– It should first be noted that T&E is the most natural and universal resolution 
method for a human who is unaware of more complex possibilities and who does 

                                                                                                                                               
but these hardest steps may correspond to the elimination of different candidates. This is not 
an abstract view; it happens very often. 
3 We have shown this in great detail for Sudoku, but the resolution paths we have obtained for 
most of the Futoshiki, Kakuro, Map colouring, Numbrix® and Hidato® examples confirm a 
similar behaviour. 
4 By contrast, the “reversibility” condition often imposed on chains in some Sudoku circles 
(never clearly formulated before HLS) is very restrictive and it leads some players to reject 
solutions based on non-reversible (or “orientated”) chains (such as whips and braids) and to 
the (in our opinion, hopeless for hard instances) search for extremely complex patterns (such 
as all kinds of what we would call extended g-Fish patterns: finned, sashimi, chains of g-Fish,  
…). This said, we acknowledge that Reversible-Subset-Chains (Nice Loops, AICs) may have 
some appeal for moderately complex instances. 
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not accept guessing. This was initially only a vague intuition. But, with time, it has 
received very concrete confirmations from our experience in the Sudoku micro-
world (with friends, students, contacts, or from questions of newcomers on forums), 
considering the way new players spontaneously re-invent it without even having to 
think of it consciously. Indeed, it does not seem that they reject guessing a priori; 
they start by using it and they feel unsatisfied about it after some time, as soon as 
they understand that it is an arbitrary step in their solution; “no-guessing” then 
appears as an additional a posteriori requirement. Websites dedicated to the other 
logic puzzles studied in this book are another source of confirmation: T&E (in 
various names and usually in informal guises, but always in a form compatible with 
our formal definition) always appears as the most widely used resolution method, 
except of course for the easiest puzzles. 

– The “T&E vs braids” theorem means that the most natural T&E solving 
technique, in spite of being strongly anathemised by some Sudoku experts, is not so 
far from being compatible with the abstract “pure logic” requirement. Moreover, its 
proof shows that a human solver can always easily modify a T&E solution in order 
to present it as a braid solution. Thanks to the subsumption theorems or to the more 
general “T&E(T) vs T-braids” theorem, this remains true when he learns more 
elaborate techniques (such as Subset or g-Subset rules) and he starts to combine 
them with T&E. 

– Finding the shortest braid solution is a much harder goal than finding any 
solution based on braids and this is where the main divergence with a solution 
obtained by mere T&E occurs. For the human solver who started with T&E, it is 
nevertheless a natural step to try to find a shorter (even if not the shortest) solution. 
An obvious possibility consists of excising the useless branches of what he has first 
found; but he can also look for alternative braids, either for the same elimination or 
for a different one. 

– As for the fourth point, a human solver is very likely to have spontaneously 
the idea of using the continuity condition of whips to guide his search for a 
contradiction on some target Z: it means giving a preference to pushing further the 
last tried step rather than a previous one. It is so natural that he may even apply it 
without being aware of it. 

Finally, for a human solver, the transition from the spontaneous T&E procedure 
to the search for whips can be considered as a very natural process. Learning about 
Subsets and g-Subsets and looking for them can also be considered as a natural, 
though different, evolution. And the two can be combined. Once more, there is no 
unique way of defining what “the best solution” may mean. 

Of course, a human player can also follow a very different learning path, starting 
with application specific rules, such as xy-chains in Sudoku and progressively trying 
to spot patterns from the ascending sequence of more complex rules following a 
discovery path similar to that in HLS. But, unless he limits himself to moderately 
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complex instances, he cannot avoid the kind of non-reversible chain patterns 
introduced in this book. 

17.1.4. About a strategic level 

We have used the confluence property to justify the definition of a “simplest-
first” strategy for all the braid and generalised braid (and, by extension, all the whip 
and generalised whip) resolution theories. This strategy perfectly fits the goals of 
finding the simplest solution (keeping the above comments on “simplest” in mind) 
and of rating an instance. 

What the “simplest-first” strategy guarantees should be clear: for a resolution 
theory T with the confluence property, it finds a solution with the smallest T-rating 
(if there is one); in any case, at each step in any resolution path within T, the 
available assertion or elimination with the lowest T-rating is applied (or, when there 
are several, one of the possible assertions or eliminations with this rating is 
randomly chosen and applied). One thing it does not guarantee is that all these steps 
are necessary for justifying the next ones or that there is no other resolution path 
with fewer eliminations (not counting Elementary Constraints Propagation). 

Other systematic strategies can also be imagined. One of them consists of 
considering subsets of CSP variables of “same type” and defining special cases of 
all the rules by restricting them to such subsets of variables and by assigning these 
cases higher priorities than their initial full version. This is what we have done for 
Sudoku in HLS1, with the 2D rules. It is easy to see that, as the “2D” rules are the 
various 2D projections (on the rc-, rn-, cn- and bn- spaces) of the “3D” ones 
presented here, all the 2D-braid theories (in each of these four 2D spaces) are stable 
for confluence and have the confluence property; it is therefore also true of their 
union. In HLS1, we have shown that 97% of the puzzles in the random Sudogen0 
collection can be solved by such 2D rules (the real percentage may be a little less for 
an unbiased sample). We still consider these rules as interesting special cases that 
have an obvious place in the “simplest-first” strategy and that may be easier to find 
and/or to understand for a human player. 

Now, it is very unlikely that any human solver would proceed in such a 
systematic way as described in any of the above two strategies. He may prefer to 
concentrate on some aspect of the puzzle and try to eliminate a candidate from a 
chosen cell (or group of cells). As soon as he has found a pattern justifying an 
elimination, he applies it. This could be called the opportunistic “first-found-first-
applied” strategy. And, thanks to stability for confluence, it is justified in all the 
generalised braid resolution theories defined in this book. In simple terms, there can 
be no “bad” move able to block the way to the solution. This conclusion is in strong 
opposition to claims often made in some Sudoku circles that adding a clue (or 
asserting a value) may make a puzzle harder; such views can only rely on forgetting 
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a few facts: 1) such cases arise only when rules of uniqueness are involved; 2) they 
arise only when hardness is measured by the SER; 3) if added to a resolution theory 
with the confluence property, a rule for uniqueness destroys it, unless it is given 
higher priority than all the other rules; 4) there is a confusion in SER between the 
priority of a rule and its rating; 5) this confusion prevents rules for uniqueness to 
apply as soon as they should; 6) as a result, the SER rating of rules for uniqueness is 
inconsistent. 

What may be missing however in our approach is more general “strategic” 
knowledge for orientating the search: when should one look for such or such 
pattern? This would be meta-knowledge about how to use the knowledge included 
in the resolution theories. It would very likely have to be application-specific5.  

But the fact is, we have no idea of which criteria could constitute a basis for such 
meta-knowledge. Worse, even in the most studied Sudoku CSP, whereas there is a 
plethora of literature on resolution techniques (sometimes misleadingly called 
strategies), nothing has ever been written on the ways they should be used, i.e. on 
what might legitimately be called strategies. In particular, one common prejudice is 
that one should first try to eliminate bivalue/bilocal candidates (i.e., in our 
vocabulary, candidates in bivalue rc, rn, cn or bn cells). Whereas this may work for 
simple puzzles, it is almost never possible for complex ones. This can easily be seen 
by examining the hard examples of this book (for any of the CSPs we have studied), 
with the long sequences of whip eliminations necessary before a Single is found: if 
any of these eliminations had occurred for a bivalue CSP variable, then it would 
have been immediately followed by a Single. 

17.2. About minimal instances and uniqueness 

17.2.1. Minimal instances and uniqueness 

Considering that, most of the time, we restrict our attention to minimal instances 
that (by definition) have a unique solution, one may wonder why we do not 
introduce any “axiom” of uniqueness. Indeed, there are many reasons: 

– it is true that we restrict all our statistical analyses of resolution rules to 
minimal instances, for reasons that have been explained in the Introduction; but it 
does not entail that validity of resolution rules should be limited per se to minimal 
instances; on the contrary, they should apply to any instance; in a few examples in 
this book, our rules have even been used to prove non-uniqueness or non-existence 
of solutions; 

– as mentioned in the Introduction, from the point of view of Mathematical 
Logic, uniqueness cannot be an axiom, at least not an axiom that could impose 
                               
5 [Laurière 1978] presents a different perspective, based on general-purpose heuristics. 
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uniqueness of a solution; for any instance, it can only be an assumption; moreover, 
when incorrectly applied to a multi-solution instance, the assumption of uniqueness 
can lead, via a vicious circle, to the erroneous conclusion that an instance has a 
unique solution; we have given an example in HLS1, section XXII.3.1 (section 3.1 
of chapter “Miscellanea” in HLS2); 

– uniqueness is not a constraint the CSP solver (be he human or machine) is 
expected or can choose to satisfy; in some CSPs or some situations (such as for 
statistical analyses or for logic puzzles like Sudoku), uniqueness may be a 
requirement to the provider of instances (he should provide only “well formed” 
instances, i.e. minimal instances or, at least, instances with a unique solution); the 
CSP solver can then decide to trust his provider or not; if he does and he uses rules 
based on it in his resolution paths, then uniqueness can best be described as an 
oracle; for this reason, in all the solutions we have given, uniqueness is never 
assumed, but it is proven constructively from the givens;  

– the fact is, there is no known way of exploiting the assumption of uniqueness 
for writing any general resolution rule for uniqueness; and we can take no 
inspiration in the Sudoku case, because all the known techniques based on the 
assumption of uniqueness are Sudoku specific; 

– in the Sudoku case, if any of the known rules of uniqueness is added in its 
usual form to a resolution theory with the confluence property, it destroys 
confluence (see HLS for an example); however, we have not explored the possibility 
of other (more complex) formulations that could preserve it; 

– still in the Sudoku case, it does not seem that the known rules for uniqueness 
have much resolution power; there is no known example that could be solved if they 
were added to “standard” resolution rules but that could not otherwise. 

Of course, we are not trying to deter anyone from using uniqueness in practice, if 
they like it, in CSPs for which it allows to formulate specific resolution rules, such 
as Sudoku (where it has always been a very controversial topic, but it has also led to 
the definition of smart techniques); in some rare cases, it can simplify the resolution 
paths. We are only explaining why we chose not to use it in our theoretical 
approach. One should always keep in mind that theory often requires more stringent 
constraints than practice. 

17.2.2. Minimal instances vs density and tightness of constraints 

Two global parameters of a CSP, its “density of constraints” and its “tightness”, 
have been identified in the classical CSP literature. Their influence on the behaviour 
of general-purpose CSP solving algorithms has been studied extensively and they 
have also been used to compare such algorithms. (As far as we know, these studies 
have been about unrestricted CSP instances; we have been unable to find any 
reference to the notion of a minimal instance in the CSP literature.) 
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Definitions (classical in CSPs): the density of constraints of a CSP is the ratio 
between the number of label pairs linked by some constraint (supposing that all the 
constraints are binary) and the total number of label pairs; the tightness of a CSP is 
the ratio between the number of label pairs linked by some “strong” constraint (i.e. 
some constraint due to a CSP variable) and the number of label pairs linked by some 
constraint. 

Density reflects the intuitive idea that the vertices of a undirected graph (here, 
the graph of labels) can be more or less tightly linked by the edges (here the direct 
binary contradictions); it also evokes a few general theorems relating the density and 
the diameter of a random graph (a topic that has recently become very attractive 
because of communication networks). Tightness evokes the difference we have 
mentioned between Sudoku or LatinSquare (tightness 100%, for any grid size) and 
N-Queens (tightness ~ 50%, depending on n). 
 

In the context of this book, relevant questions related to these parameters should 
be about their influence on the scope of the various types of resolution rules with 
respect to the set of minimal instances of the CSP. However, how the definitions of 
these two parameters should be adapted to this context is less obvious than it may 
seem at first sight. The question is, should one compute these parameters using all 
the labels of the CSP or only the actual candidates? In the latter case, they would 
change with each step of the resolution process. 

Taking the 9×9 Sudoku example, the computation is easy for labels: there are 
729 labels (all the nrc triplets) and each label is linked by some constraint to 8 
different labels on each of the n, r, c axes, plus 4 remaining labels on the b axis. 
Each label is thus linked by some constraint to the same number (28) of other labels 
and one gets a density equal to 28/728 = 3.846%. More generally, for n×n Sudoku 
with n = m2, density is: (4m2-2m-2)/(m6-1); it tends rapidly to zero (as fast as 4/n2) 
as the size n of the grid increases. 

However, considering the first line of each Sudoku resolution path in this book, 
one can check that for a minimal puzzle, after the Elementary Constraint 
Propagation rules have been applied (i.e. after the straightforward initial domain 
restrictions), the number of candidates remaining in the initial resolution state RSP 
of an instance P is much smaller. As all that happens in a resolution path depends 
only on RSP, a definition of density based on the candidates in RSP can be expected 
to be more relevant. But, the analysis of the first series of 21,375 puzzles produced 
by the controlled-bias generator, leads to the following conclusions, showing that 
neither the number of candidates in RSP nor the density of constraints in RSP have 
any significant correlation with the difficulty of a puzzle P (measured by its W 
rating): 
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– the number of candidates in RSP has mean 206.1 (far less than the 729 labels) 
and standard deviation 10.9; it has correlation coefficient -0.20 with the W rating; 

– the density of constraints in RSP has mean 1.58% (much less than when 
computed on all the labels) and standard deviation 0.05%; its has correlation 
coefficients -0.16 with the number of candidates in RSP and -0.06 with the W rating. 

One (seemingly more interesting) open question is: is there a correlation between 
the rating of the current “simplest” possible elimination and the current density 
(based on the current set of candidates before the elimination). In the instances with 
a hard first step that we checked, there was no significant deviation from the mean; 
but the question may be worth more systematic investigation. 
 

Can tightness give better or different insights? This parameter plays a major role 
in the left to right extension steps of the partial chains of all the types defined in this 
book. In n×n Sudoku or n×n LatinSquare, tightness is 100%, whatever the value of 
n; these examples can therefore not be used to investigate this parameter. If there are 
few CSP variables, there may be few chains. In this context, it should however be 
noticed that, from the millions of Sudoku puzzles we have solved, problems that 
appear for the hardest ones solvable by whips or g-whips arise from two opposite 
causes: not only because there are too few partial whips or g-whips (and no 
complete ones), but also because there are too many useless partial whips or g-whips 
(eventually leading to computational problems due to memory overflow). 

One idea that needs be explored in more detail is that the possible statistical 
effects of initial density or tightness of constraints on complexity are minimised (as 
is the case for the number of givens) by considering the thin layer of minimal 
instances (because they have a unique solution). But  the 16×16 and 25×25 Sudoku 
examples in section 11.5 show that they cannot be minimised to the point of limiting 
the depth of T&E in a way independent of density (or grid size). 

17.3. About ratings, simplicity, patterns of proof 

Our initial motivations included three broad categories of (vague) requirements:  
– a “pure logic”, “pattern-based”, “rule-based”, “constructive” solution with “no 

guessing”, 
– an “understandable”, “explainable” solution, 
– and a “simplest” solution.  

If the first type has been given a precise meaning and has been satisfied in Part I, 
and if the second can be considered as a more or less subjective mix of the other 
two, one may wonder what the third has become or rather how it had to be refined. 
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17.3.1. About general ratings and the requirement for the “simplest” solution 

For any instance P of any CSP, several ratings of P have been introduced: W, B, 
gW, gB, S+W, S+B, SW, SB,… All of them have been defined in pure logic terms, 
they are invariant under the symmetries of the CSP (if its constraints are properly 
modelled) and they are intrinsic properties of P. They have also been shown to be 
largely mutually consistent, i.e. they assign the same finite ratings “most of the 
time” to instances in T&E(1)6 – which probably already includes much more than 
what can be solved “manually” by normal human beings.  

Moreover, if one nevertheless wants to go further, we have defined the WW, BB, 
W*W, B*B ratings and we have shown that the BB rating is finite for any instance 
in T&E(2), i.e. that can be solved with at most two levels of Trial-and-Error. 

What the multiplicity of these logically grounded ratings also shows is that there 
is one thing all our formal analyses cannot do in our stead: choosing what should be 
considered as “simplest”. And we strongly believe that there can be no universal a 
priori definition of simplicity of a resolution path, even when one adopts a hardest-
step view of simplicity and even for a problem as “simple” as Sudoku, let alone for 
the general finite CSP. Simplicity can only depend on one’s specific goals. For 
definiteness, let us illustrate this with the Sudoku CSP. 

If one is interested in providing examples of some particular set of techniques or 
promoting them, then a solution considered as the simplest must (tautologically) use 
only these techniques; the job will then be to provide nice handcrafted examples of 
such puzzles (and, sometimes, to carefully hide the fact that they are exceptional in 
the set of all the minimal puzzles); this is the approach implicitly taken by most 
Sudoku puzzle providers and most databases of “typical examples” associated with 
computerised solvers. Unfortunately, apart from those here and in HLS, we lack 
both formal studies of such sets of techniques and statistical analyses of their scopes. 

If one is interested in the simplest pattern-based solution for all the minimal 
puzzles, then, considering the statistical results of chapter 6, a whip solution could 
certainly be considered as the simplest one, statistically; a g-whip solution would be 
a good alternative, as the structural complexity of g-whips is not much greater than 
that of whips. “Statistically” means that, in rare cases, a better solution including 
Subsets or g-Subsets or Reversible-Subset-Chains or S-whips or W-whips could be 
found – “better” in the sense that it would provide a smaller rating (at the cost of 
using more complex patterns). Although it is hard to imagine a motivation for this 
when whips or g-whips would be enough, one could also use Wp*-whips or B*-
braids, i.e. rely on T&E(2) contradictions as if they were ordinary constraints; doing 
this may ultimately be only a matter of personal taste [provided that confusion is not 
                               
6 Strictly speaking, this has been shown in precise terms only for 9×9 Sudoku, but there are 
serious indications that it remains true for  the other logic puzzles we have examined. 
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created by comparing without caution ratings that involve these derived constraints 
with those that do not]. 

If one is interested in the “hardest” instances, then it should first be specified 
precisely what is meant by “hardest” (in particular with respect to which rating); this 
may seem obvious, but it remains frequent on Sudoku forums to see (implicit) 
references to two different ratings in the same sentence. In Sudoku, puzzles harder 
than the “hardest” known ones with respect to the prevailing SER rating keep being 
discovered. One can consider that Part III of this book (apart from chapter 8) is 
dedicated to resolution rules for the hardest puzzles (not in the sense of the SER, but 
in the broader sense that they are not solvable by braids or g-braids, or equivalently 
by at most one level or T&E or gT&E). Much depends on two parameters: the 
maximal depth d of Trial-and-Error necessary to solve these instances and the 
maximal look-ahead p necessary to solve them at depth d-1. [Even for 9×9 Sudoku, 
although we have shown that there are very strong reasons to conjecture that d = 2 
and p = 7, i.e. that every puzzle can be solved by B7-braids, we have no formal proof 
of this.]  

The T&E(2) land is where many different possibilities appear. For instances 
there, instead of looking for the simplest solution with respect to the universal BB 
rating, one can consider two simpler approaches: 1) the B?B classification, possibly 
followed by a Bp-braids  solution, and 2) the Bp*-braids view. As an illustration of 
the latter, the solution given for EasterMonster in section 12.3.3.1 proceeds in two 
steps: the first step provides the main lines of the proof as a sequence of B*-
whips[1] eliminations; the second step should contain the “details” of the proof by 
exhibiting the bi-braids justifying each of these B*-whips[1]. This led us to 
introduce the general notion of a pattern of proof, but this is a vast topic and we 
have only skimmed it. 

As shown by the sk-loop examples in chapter 13, it may occasionally happen 
that application-specific patterns (often tightly related to patterns of givens enjoying 
very particular symmetries or quasi-symmetries) reduce the complexity of an 
instance (measured in this case by the B?B classification). However, for the very 
hardest instances, it may also happen that the whole requirement of simplicity 
becomes merely meaningless: the existence of extremely rare but very hard 
instances that cannot be solved by any “simple” rules (in a vague intuitive sense of 
“simple”) is a fact that cannot be ignored. 

17.3.2. About adapting the general ratings to an application 

The Futoshiki CSP allows two additional comments about how the general 
ratings introduced in this book can easily be adapted to a particular CSP in order to 
better take into account any “natural” notion of simplicity in specific applications:  
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– although “ascending chains” of any size are equivalent to series of whips of 
length one, they are so natural that presenting them as whips would make the 
resolution paths look unnecessarily complicated, with lots of elementary and boring 
steps; this means that, in some cases, our requirement of simplicity cannot be 
defined based only on formal criteria but it may have to take into account matters of 
presentation; however, from a technical point of view, this is more a cosmetic than a 
deep matter; 

– “hills” and “valleys” raise a much more interesting question; they are almost 
as natural and obvious patterns as ascending chains, whatever their size; although 
they can always be considered as Subsets or as S-whips and their complexity in 
terms of the equivalent Subsets or S-whips would be much higher than that of 
ascending chains, it would be intuitively absurd to assign them a much greater 
complexity, because there is not much difference between finding or understanding 
hills and valleys and finding or understanding ascending chains, and this does not 
depend on their size; fortunately, stability for confluence allows to combine any Bn 
or gBn theory with hills and valleys of unrestricted size without loosing confluence; 
this means that hills and valleys can consistently be assigned any rating one wants in 
the Bn or gBn hierarchy; said otherwise, one can refine the notion of simplicity in 
such a way that it becomes adapted to the specificities of the Futoshiki CSP, without 
loosing the benefits of the general theory; if needed, this illustrates again the 
importance of the confluence property. 

The above remarks can be transposed to Kakuro and to the coupling rules: any 
resolution theory should include them (and we have accordingly defined the + 
variants of all the theories introduced in this book: BRT+, W1

+, …). 

17.3.3. Similarity between Subset and whip/braid patterns of same size 

We have noticed a remarkable formal similarity between the Subset and the 
whip/braid patterns of same size (see Figure 11.3 and comments there). It has 
appeared in very explicit ways in the proofs of the confluence property and of the 
generalised “T&E(T) vs T-braids” theorems for the Sp-braids and Bp-braids. But the 
general subsumption theorems in section 8.7 and the Sudoku-specific statistical 
results in Table 8.1 suggest that whips/braids have a much greater resolution power 
than Subsets of same size. As mentioned in section 8.7.3, these results indicate that 
the definition of Subsets is much more restrictive than the definition of 
whips/braids. And Table 11.1 shows that the same kind of very large difference in 
resolution power remains true for the generalised braids including these patterns as 
right-linking elements, at least for the Sudoku CSP. 

In Subsets, transversal sets are defined by a single constraint. In whips, the fact 
of being linked to the target or to a given previous right-linking candidate plays a 
role very similar to each of these transversal sets. But being linked to a candidate is 
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much less restrictive than being linked to it via a pre-assigned constraint; in this 
respect, the three elementary examples for whips of length 2 in sections 8.7.1.1 and 
8.8.1 are illuminating. As shown by the subsumption and almost-subsumption 
results in section 8.7, the few cases of Subsets not covered by whips because of the 
restrictions related to sequentiality are too rarely met in practice to be able to 
compensate for this.  

For the above reasons, we conjecture that, in any CSP, whips/braids have a much 
greater resolution potential than Subsets of same length p, at least for small values 
of p; and Bp-braids have a much greater resolution potential than Sp-braids. For large 
values of p, it is likely true also, but it is less clear because there may be an 
increasing number of cases of non-subsumption but there may also be more ways of 
being linked to a candidate. Much depends on how many different constraints a 
given candidate can participate in. This is an area where more work is necessary. 

17.4. About CSP-Rules 

As mentioned in the Foreword and as can be checked by a quick browsing of 
this book, it is almost completely written at the logic level; it does not say much 
about the algorithmic or the implementation levels – beyond the fact that our 
detailed definitions provide unambiguous specifications for them, whichever 
computer language one finally chooses. However, a few general indications on CSP-
Rules may be welcome.  

In this section, it may be useful for the reader not yet familiar with the basic 
principles of expert systems and/or inference engines to read one of the quick 
introductions that are widely available on the Web (in particular the notions of a rule 
base and a fact base); the CLIPS documentation can be browsed, but this is not 
essential for reading what follows. 

17.4.1. CSP-Rules 

Almost all7 the resolution paths appearing in this book were obtained with the 
current last version of CSP-Rules (version 1.2), the generic finite CSP solver we 
wrote in the rule-based language of the CLIPS8 inference engine.  

                               
7 The only exceptions are the few N-Queens examples, for which we did not implement the 
necessary interface (mainly because we could not find any generator of N-Queen instances 
and we did not want to spend time on writing one, so that we finally have only very easy 
instances). Two other exceptions are mentioned explicitly in the text. 
8 CLIPS for Mac OSX, version 6.30. CLIPS is the acronym for “C Language Integrated 
Production System”; it is a distant descendant of OPS (the Official Production System) but its 
syntax (inherited from ART, a commercial expert system shell) is much better. CLIPS is free, 
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In principle, CSP-Rules can also be run on JESS9 (all the rules we have 
implemented use only the part of the syntax ensuring compatibility). But JESS is 
slower and we have given up trying to fill up the compatibility issues when coding 
the application-specific parts of the various CSPs or to deal with Java-specific 
memory management problems. 

CSP-Rules was designed from the start as a research tool, with the main purpose 
of proving concretely that the general resolution rules and the simplest-first strategy 
defined in this book can be implemented in a generic way and can lead in practice to 
real solutions for different CSPs, even for their hard instances. Another purpose was 
to allow quick implementation of tentative rules and to test their resolution potential 
with respect to those we had already defined. Finally, we also wanted to make it 
easy to add application-specific rules (such as sk-loops in Sudoku, hills and valleys 
in Futoshiki or coupling rules in Kakuro) or to code alternative strategies without 
having to deal with a programming language like C. 

Saying that we conceive CSP-Rules as a research tool means in particular that it 
was not designed with high speed or low memory purposes in mind, although it 
includes a few standard tricks to avoid too fast memory explosion and it has been 
used several times to solve millions of instances. It seems obvious to us that a direct 
implementation in C or any other procedural language could lead to large 
improvements in computation times and memory requirements, especially for hard 
instances – although the exponential increase of the number of partial patterns (with 
respect to their length) before a full one can be used to produce an elimination is 
inherent in some instances. The reference to g-labels and S-labels instead of g-
candidates and Subsets in g-whips and S-whips is a key for many optimisations of 
memory. 

CSP-Rules is a descendant of SudoRules, the Sudoku solver we originally 
developed in parallel with the writing of HLS. As the main parts of the later versions 
of SudoRules were already written in an almost application independent way, it was 
easy to maximally reduce and to isolate the unavoidably application-specific parts. 
The version of SudoRules (16.2) based on CSP-Rules that was used in the Sudoku 
examples presented in this book is 100% equivalent to (i.e. it produces exactly the 
same resolution paths as) the last version before the split (namely 15b.1.12, which 
has been our version of reference at the time of writing CRT), when the same rules 
are enabled. 

                                                                                                                                               
which probably largely contributed to make it one of the most widely adopted shells. Another 
reason is that CLIPS implements the RETE algorithm that made OPS famous, with all the 
improvements that appeared since that time, making it one of the most efficient shells. 
9 Current version as of this writing, i.e. 6.1p2. JESS is the acronym for “Java Expert System 
Shell”; it was initially the Java version of CLIPS; but, due to the underlying language, it has 
grown up differently and there are now compatibility issues. 
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The current version of CSP-Rules implements the following sets of rules (we 
have also implemented other tentative rules but they are not mentioned in this book 
because they did not lead to interesting results):  

– BRT (i.e. ECP + Single + Contradiction detection + Solution detection),  
– bivalue-chains, whips, braids,  
– g-bivalue-chains, g-whips, g-braids,  
– forcing whips, forcing braids,  
– bi-whips, bi-braids,  
– forcing bi-whips, forcing bi-braids,  
– W*-whips, B*-braids.  

For each of these patterns and for each possible length, CSP-Rules has two or 
three rules (one or two for building the partial patterns, one for detecting the full 
ones and doing the eliminations), plus an activation rule (used mainly for memory 
optimisation) and a tracking rule (as they are mainly used for tracking the numbers 
of partial patterns and for statistics, their output does not appear in the resolution 
paths given here). All these rules are written only in the generic terms of candidates, 
g-candidates, CSP-variables, links and g-links. Their effective output (what we want 
to appear in a resolution path) is controlled by a set of global variables. 

CSP-Rules also implements the generic parts of functions used in the left-hand 
side of rules (when it is both possible and more efficient to make a test [linked, 
glinked, …] than to write an additional explicit condition pattern) or for the 
interfacing with specific applications (e.g. for printing the different steps of the 
resolution path – although it already implements the generic parts of the output 
functions). Any application must provide the specific parts of these functions. 

CSP-Rules also provides the possibility of computing T&E(T) and bi-T&E(T) 
for any resolution theory T whose rules are programmed in CSP-Rules. 

Because it was too hard to do this in sufficiently efficient ways, CSP-Rules does 
not implement a generic version of Subsets (let alone of g-Subsets). Instead, it has a 
standard version of Subsets (upto size four) valid for CSPs based on a square (or 
rectangular) grid (like most of the examples in this book), with a sub-version with 
blocks as in Sudoku. In the Kakuro CSP, its adaptation to the case of Subsets 
restricted to sectors was straightforward. 

The generation of instances is not part of CSP-Rules. 

17.4.2. Configuration of an application for solving an instance 

Any application (any particular CSP) has a configuration file allowing to choose 
the resolution theory one wants to use, i.e. which patterns should be enabled and up 
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to which size. Technically, “enabled” means loaded into the rule base; it does not 
mean “activated”. An enabled pattern gets activated only if necessary (i.e. if shorter 
ones are nor enough to solve the instance under consideration). 

Consistency of the chosen parameters is ensured automatically, e.g.  
– for any pattern P[n] depending on a size or length parameter n, if P[n] is 

explicitly enabled, then P[n-1], … P[1] are automatically enabled;  
– if g-braids of length upto n are enabled, then braids and g-whips of length upto 

n are enabled if they have not been explicitly enabled with a larger length; 
– if g-whips of length upto n are enabled, then whips of length upto n are 

enabled if they have not been explicitly enabled with a larger length;  
– if braids of length upto n are enabled, then whips of length upto n are enabled 

if they have not been explicitly enabled with a larger length… 

However, bivalue-chains are not automatically enabled when whips are enabled. 
This may be changed in the future. But we have found it useful to keep this degree 
of freedom, as enabling special types of whips sometimes allows to find different 
whip resolution paths (see an example in section 5.10.3). 

17.4.3. Resolution strategies predefined in CSP-Rules 

The current version of CSP-Rules has only one resolution strategy, the 
“simplest-first”, with the priorities as described in section 7.5.2: 
ECP > S > 
biv-chain[1] > whip[1] > g-whip[1] > braid[1] > g-braid[1] >  
… > … 
biv-chain[k] > whip[k] > g-whip[k] > braid[k] > g-braid[k] > 
biv-chain[k+1] > whip[k+1] > g-whip[k+1] > braid[k+1] > g-braid[k+1] > … 

A few things are easy to change, such as assigning braids[k] a higher priority 
than g-whips[k]  or introducing more special cases of whips. For radically different 
strategies, the main problem would not be to code them in CSP-Rules, but to first 
define them (see the remarks in section 17.1.4). 

17.4.4. Applications already interfaced to CSP-Rules 

As of this writing, the current version of CSP-Rules has application-specific 
interfaces (and in some cases a few application-specific resolution rules, possibly 
including alternative versions of the rules in BRT, e.g. different rules for Naked and 
Hidden Singles) for the following CSPs: LatinSquare, Sudoku, Futoshiki, Kakuro, 
Map-colouring, Numbrix® and Hidato®. For each of them, the volume of the source 
code of the application-specific part (including mainly input-output functions) is 
between 3% and 5% of the total generic CSP-Rules part. For Sudoku, more 
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functions had been written in the previous versions of SudoRules, but they were 
mainly intended for statistical analyses and cannot be considered as necessary for 
the normal resolution of instances; moreover, with a little more adaptation work, 
they could also be made generic, if needed. 
 


